syn/
parse.rs

1//! Parsing interface for parsing a token stream into a syntax tree node.
2//!
3//! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
4//! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
5//! these parser functions is a lower level mechanism built around the
6//! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
7//! tokens in a token stream.
8//!
9//! [`Result<T>`]: Result
10//! [`Cursor`]: crate::buffer::Cursor
11//!
12//! # Example
13//!
14//! Here is a snippet of parsing code to get a feel for the style of the
15//! library. We define data structures for a subset of Rust syntax including
16//! enums (not shown) and structs, then provide implementations of the [`Parse`]
17//! trait to parse these syntax tree data structures from a token stream.
18//!
19//! Once `Parse` impls have been defined, they can be called conveniently from a
20//! procedural macro through [`parse_macro_input!`] as shown at the bottom of
21//! the snippet. If the caller provides syntactically invalid input to the
22//! procedural macro, they will receive a helpful compiler error message
23//! pointing out the exact token that triggered the failure to parse.
24//!
25//! [`parse_macro_input!`]: crate::parse_macro_input!
26//!
27//! ```
28//! # extern crate proc_macro;
29//! #
30//! use proc_macro::TokenStream;
31//! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
32//! use syn::parse::{Parse, ParseStream};
33//! use syn::punctuated::Punctuated;
34//!
35//! enum Item {
36//!     Struct(ItemStruct),
37//!     Enum(ItemEnum),
38//! }
39//!
40//! struct ItemStruct {
41//!     struct_token: Token![struct],
42//!     ident: Ident,
43//!     brace_token: token::Brace,
44//!     fields: Punctuated<Field, Token![,]>,
45//! }
46//! #
47//! # enum ItemEnum {}
48//!
49//! impl Parse for Item {
50//!     fn parse(input: ParseStream) -> Result<Self> {
51//!         let lookahead = input.lookahead1();
52//!         if lookahead.peek(Token![struct]) {
53//!             input.parse().map(Item::Struct)
54//!         } else if lookahead.peek(Token![enum]) {
55//!             input.parse().map(Item::Enum)
56//!         } else {
57//!             Err(lookahead.error())
58//!         }
59//!     }
60//! }
61//!
62//! impl Parse for ItemStruct {
63//!     fn parse(input: ParseStream) -> Result<Self> {
64//!         let content;
65//!         Ok(ItemStruct {
66//!             struct_token: input.parse()?,
67//!             ident: input.parse()?,
68//!             brace_token: braced!(content in input),
69//!             fields: content.parse_terminated(Field::parse_named, Token![,])?,
70//!         })
71//!     }
72//! }
73//! #
74//! # impl Parse for ItemEnum {
75//! #     fn parse(input: ParseStream) -> Result<Self> {
76//! #         unimplemented!()
77//! #     }
78//! # }
79//!
80//! # const IGNORE: &str = stringify! {
81//! #[proc_macro]
82//! # };
83//! pub fn my_macro(tokens: TokenStream) -> TokenStream {
84//!     let input = parse_macro_input!(tokens as Item);
85//!
86//!     /* ... */
87//! #   TokenStream::new()
88//! }
89//! ```
90//!
91//! # The `syn::parse*` functions
92//!
93//! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
94//! as an entry point for parsing syntax tree nodes that can be parsed in an
95//! obvious default way. These functions can return any syntax tree node that
96//! implements the [`Parse`] trait, which includes most types in Syn.
97//!
98//! [`syn::parse`]: crate::parse()
99//! [`syn::parse2`]: crate::parse2()
100//! [`syn::parse_str`]: crate::parse_str()
101//!
102//! ```
103//! use syn::Type;
104//!
105//! # fn run_parser() -> syn::Result<()> {
106//! let t: Type = syn::parse_str("alloc::collections::HashMap<String, Value>")?;
107//! #     Ok(())
108//! # }
109//! #
110//! # run_parser().unwrap();
111//! ```
112//!
113//! The [`parse_quote!`] macro also uses this approach.
114//!
115//! [`parse_quote!`]: crate::parse_quote!
116//!
117//! # The `Parser` trait
118//!
119//! Some types can be parsed in several ways depending on context. For example
120//! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
121//! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
122//! may or may not allow trailing punctuation, and parsing it the wrong way
123//! would either reject valid input or accept invalid input.
124//!
125//! [`Attribute`]: crate::Attribute
126//! [`Punctuated`]: crate::punctuated
127//!
128//! The `Parse` trait is not implemented in these cases because there is no good
129//! behavior to consider the default.
130//!
131//! ```compile_fail
132//! # extern crate proc_macro;
133//! #
134//! # use syn::punctuated::Punctuated;
135//! # use syn::{PathSegment, Result, Token};
136//! #
137//! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
138//! #
139//! // Can't parse `Punctuated` without knowing whether trailing punctuation
140//! // should be allowed in this context.
141//! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
142//! #
143//! #     Ok(())
144//! # }
145//! ```
146//!
147//! In these cases the types provide a choice of parser functions rather than a
148//! single `Parse` implementation, and those parser functions can be invoked
149//! through the [`Parser`] trait.
150//!
151//!
152//! ```
153//! # extern crate proc_macro;
154//! #
155//! use proc_macro::TokenStream;
156//! use syn::parse::Parser;
157//! use syn::punctuated::Punctuated;
158//! use syn::{Attribute, Expr, PathSegment, Result, Token};
159//!
160//! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
161//!     // Parse a nonempty sequence of path segments separated by `::` punctuation
162//!     // with no trailing punctuation.
163//!     let tokens = input.clone();
164//!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
165//!     let _path = parser.parse(tokens)?;
166//!
167//!     // Parse a possibly empty sequence of expressions terminated by commas with
168//!     // an optional trailing punctuation.
169//!     let tokens = input.clone();
170//!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
171//!     let _args = parser.parse(tokens)?;
172//!
173//!     // Parse zero or more outer attributes but not inner attributes.
174//!     let tokens = input.clone();
175//!     let parser = Attribute::parse_outer;
176//!     let _attrs = parser.parse(tokens)?;
177//!
178//!     Ok(())
179//! }
180//! ```
181
182#[path = "discouraged.rs"]
183pub mod discouraged;
184
185use crate::buffer::{Cursor, TokenBuffer};
186use crate::error;
187use crate::lookahead;
188use crate::punctuated::Punctuated;
189use crate::token::Token;
190use alloc::boxed::Box;
191use alloc::rc::Rc;
192use core::cell::Cell;
193use core::fmt::{self, Debug, Display};
194#[cfg(feature = "extra-traits")]
195use core::hash::{Hash, Hasher};
196use core::marker::PhantomData;
197use core::mem;
198use core::ops::Deref;
199use core::panic::{RefUnwindSafe, UnwindSafe};
200use core::str::FromStr;
201use proc_macro2::{Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
202#[cfg(feature = "printing")]
203use quote::ToTokens;
204
205pub use crate::error::{Error, Result};
206pub use crate::lookahead::{End, Lookahead1, Peek};
207
208/// Parsing interface implemented by all types that can be parsed in a default
209/// way from a token stream.
210///
211/// Refer to the [module documentation] for details about implementing and using
212/// the `Parse` trait.
213///
214/// [module documentation]: self
215pub trait Parse: Sized {
216    fn parse(input: ParseStream) -> Result<Self>;
217}
218
219/// Input to a Syn parser function.
220///
221/// See the methods of this type under the documentation of [`ParseBuffer`]. For
222/// an overview of parsing in Syn, refer to the [module documentation].
223///
224/// [module documentation]: self
225pub type ParseStream<'a> = &'a ParseBuffer<'a>;
226
227/// Cursor position within a buffered token stream.
228///
229/// This type is more commonly used through the type alias [`ParseStream`] which
230/// is an alias for `&ParseBuffer`.
231///
232/// `ParseStream` is the input type for all parser functions in Syn. They have
233/// the signature `fn(ParseStream) -> Result<T>`.
234///
235/// ## Calling a parser function
236///
237/// There is no public way to construct a `ParseBuffer`. Instead, if you are
238/// looking to invoke a parser function that requires `ParseStream` as input,
239/// you will need to go through one of the public parsing entry points.
240///
241/// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
242/// - One of [the `syn::parse*` functions][syn-parse]; or
243/// - A method of the [`Parser`] trait.
244///
245/// [`parse_macro_input!`]: crate::parse_macro_input!
246/// [syn-parse]: self#the-synparse-functions
247pub struct ParseBuffer<'a> {
248    scope: Span,
249    // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
250    // The rest of the code in this module needs to be careful that only a
251    // cursor derived from this `cell` is ever assigned to this `cell`.
252    //
253    // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
254    // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
255    // than 'a, and then assign a Cursor<'short> into the Cell.
256    //
257    // By extension, it would not be safe to expose an API that accepts a
258    // Cursor<'a> and trusts that it lives as long as the cursor currently in
259    // the cell.
260    cell: Cell<Cursor<'static>>,
261    marker: PhantomData<Cursor<'a>>,
262    unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
263}
264
265impl<'a> Drop for ParseBuffer<'a> {
266    fn drop(&mut self) {
267        if let Some((unexpected_span, delimiter)) = span_of_unexpected_ignoring_nones(self.cursor())
268        {
269            let (inner, old_span) = inner_unexpected(self);
270            if old_span.is_none() {
271                inner.set(Unexpected::Some(unexpected_span, delimiter));
272            }
273        }
274    }
275}
276
277impl<'a> Display for ParseBuffer<'a> {
278    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
279        Display::fmt(&self.cursor().token_stream(), f)
280    }
281}
282
283impl<'a> Debug for ParseBuffer<'a> {
284    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
285        Debug::fmt(&self.cursor().token_stream(), f)
286    }
287}
288
289impl<'a> UnwindSafe for ParseBuffer<'a> {}
290impl<'a> RefUnwindSafe for ParseBuffer<'a> {}
291
292/// Cursor state associated with speculative parsing.
293///
294/// This type is the input of the closure provided to [`ParseStream::step`].
295///
296/// [`ParseStream::step`]: ParseBuffer::step
297///
298/// # Example
299///
300/// ```
301/// use proc_macro2::TokenTree;
302/// use syn::Result;
303/// use syn::parse::ParseStream;
304///
305/// // This function advances the stream past the next occurrence of `@`. If
306/// // no `@` is present in the stream, the stream position is unchanged and
307/// // an error is returned.
308/// fn skip_past_next_at(input: ParseStream) -> Result<()> {
309///     input.step(|cursor| {
310///         let mut rest = *cursor;
311///         while let Some((tt, next)) = rest.token_tree() {
312///             match &tt {
313///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
314///                     return Ok(((), next));
315///                 }
316///                 _ => rest = next,
317///             }
318///         }
319///         Err(cursor.error("no `@` was found after this point"))
320///     })
321/// }
322/// #
323/// # fn remainder_after_skipping_past_next_at(
324/// #     input: ParseStream,
325/// # ) -> Result<proc_macro2::TokenStream> {
326/// #     skip_past_next_at(input)?;
327/// #     input.parse()
328/// # }
329/// #
330/// # use syn::parse::Parser;
331/// # let remainder = remainder_after_skipping_past_next_at
332/// #     .parse_str("a @ b c")
333/// #     .unwrap();
334/// # assert_eq!(remainder.to_string(), "b c");
335/// ```
336pub struct StepCursor<'c, 'a> {
337    scope: Span,
338    // This field is covariant in 'c.
339    cursor: Cursor<'c>,
340    // This field is contravariant in 'c. Together these make StepCursor
341    // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
342    // different lifetime but can upcast into a StepCursor with a shorter
343    // lifetime 'a.
344    //
345    // As long as we only ever construct a StepCursor for which 'c outlives 'a,
346    // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
347    // outlives 'a.
348    marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
349}
350
351impl<'c, 'a> Deref for StepCursor<'c, 'a> {
352    type Target = Cursor<'c>;
353
354    fn deref(&self) -> &Self::Target {
355        &self.cursor
356    }
357}
358
359impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
360
361impl<'c, 'a> Clone for StepCursor<'c, 'a> {
362    fn clone(&self) -> Self {
363        *self
364    }
365}
366
367impl<'c, 'a> StepCursor<'c, 'a> {
368    /// Triggers an error at the current position of the parse stream.
369    ///
370    /// The `ParseStream::step` invocation will return this same error without
371    /// advancing the stream state.
372    pub fn error<T: Display>(self, message: T) -> Error {
373        error::new_at(self.scope, self.cursor, message)
374    }
375}
376
377pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
378    // Refer to the comments within the StepCursor definition. We use the
379    // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
380    // Cursor is covariant in its lifetime parameter so we can cast a
381    // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
382    let _ = proof;
383    unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
384}
385
386pub(crate) fn new_parse_buffer(
387    scope: Span,
388    cursor: Cursor,
389    unexpected: Rc<Cell<Unexpected>>,
390) -> ParseBuffer {
391    ParseBuffer {
392        scope,
393        // See comment on `cell` in the struct definition.
394        cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
395        marker: PhantomData,
396        unexpected: Cell::new(Some(unexpected)),
397    }
398}
399
400pub(crate) enum Unexpected {
401    None,
402    Some(Span, Delimiter),
403    Chain(Rc<Cell<Unexpected>>),
404}
405
406impl Default for Unexpected {
407    fn default() -> Self {
408        Unexpected::None
409    }
410}
411
412impl Clone for Unexpected {
413    fn clone(&self) -> Self {
414        match self {
415            Unexpected::None => Unexpected::None,
416            Unexpected::Some(span, delimiter) => Unexpected::Some(*span, *delimiter),
417            Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
418        }
419    }
420}
421
422// We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
423// swapping in a None is cheap.
424fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
425    let prev = cell.take();
426    let ret = prev.clone();
427    cell.set(prev);
428    ret
429}
430
431fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<(Span, Delimiter)>) {
432    let mut unexpected = get_unexpected(buffer);
433    loop {
434        match cell_clone(&unexpected) {
435            Unexpected::None => return (unexpected, None),
436            Unexpected::Some(span, delimiter) => return (unexpected, Some((span, delimiter))),
437            Unexpected::Chain(next) => unexpected = next,
438        }
439    }
440}
441
442pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
443    cell_clone(&buffer.unexpected).unwrap()
444}
445
446fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<(Span, Delimiter)> {
447    if cursor.eof() {
448        return None;
449    }
450    while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
451        if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
452            return Some(unexpected);
453        }
454        cursor = rest;
455    }
456    if cursor.eof() {
457        None
458    } else {
459        Some((cursor.span(), cursor.scope_delimiter()))
460    }
461}
462
463impl<'a> ParseBuffer<'a> {
464    /// Parses a syntax tree node of type `T`, advancing the position of our
465    /// parse stream past it.
466    pub fn parse<T: Parse>(&self) -> Result<T> {
467        T::parse(self)
468    }
469
470    /// Calls the given parser function to parse a syntax tree node of type `T`
471    /// from this stream.
472    ///
473    /// # Example
474    ///
475    /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
476    /// zero or more outer attributes.
477    ///
478    /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
479    ///
480    /// ```
481    /// use syn::{Attribute, Ident, Result, Token};
482    /// use syn::parse::{Parse, ParseStream};
483    ///
484    /// // Parses a unit struct with attributes.
485    /// //
486    /// //     #[path = "s.tmpl"]
487    /// //     struct S;
488    /// struct UnitStruct {
489    ///     attrs: Vec<Attribute>,
490    ///     struct_token: Token![struct],
491    ///     name: Ident,
492    ///     semi_token: Token![;],
493    /// }
494    ///
495    /// impl Parse for UnitStruct {
496    ///     fn parse(input: ParseStream) -> Result<Self> {
497    ///         Ok(UnitStruct {
498    ///             attrs: input.call(Attribute::parse_outer)?,
499    ///             struct_token: input.parse()?,
500    ///             name: input.parse()?,
501    ///             semi_token: input.parse()?,
502    ///         })
503    ///     }
504    /// }
505    /// ```
506    pub fn call<T>(&'a self, function: fn(ParseStream<'a>) -> Result<T>) -> Result<T> {
507        function(self)
508    }
509
510    /// Looks at the next token in the parse stream to determine whether it
511    /// matches the requested type of token.
512    ///
513    /// Does not advance the position of the parse stream.
514    ///
515    /// # Syntax
516    ///
517    /// Note that this method does not use turbofish syntax. Pass the peek type
518    /// inside of parentheses.
519    ///
520    /// - `input.peek(Token![struct])`
521    /// - `input.peek(Token![==])`
522    /// - `input.peek(syn::Ident)`&emsp;*(does not accept keywords)*
523    /// - `input.peek(syn::Ident::peek_any)`
524    /// - `input.peek(Lifetime)`
525    /// - `input.peek(token::Brace)`
526    ///
527    /// # Example
528    ///
529    /// In this example we finish parsing the list of supertraits when the next
530    /// token in the input is either `where` or an opening curly brace.
531    ///
532    /// ```
533    /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
534    /// use syn::parse::{Parse, ParseStream};
535    /// use syn::punctuated::Punctuated;
536    ///
537    /// // Parses a trait definition containing no associated items.
538    /// //
539    /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
540    /// struct MarkerTrait {
541    ///     trait_token: Token![trait],
542    ///     ident: Ident,
543    ///     generics: Generics,
544    ///     colon_token: Option<Token![:]>,
545    ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
546    ///     brace_token: token::Brace,
547    /// }
548    ///
549    /// impl Parse for MarkerTrait {
550    ///     fn parse(input: ParseStream) -> Result<Self> {
551    ///         let trait_token: Token![trait] = input.parse()?;
552    ///         let ident: Ident = input.parse()?;
553    ///         let mut generics: Generics = input.parse()?;
554    ///         let colon_token: Option<Token![:]> = input.parse()?;
555    ///
556    ///         let mut supertraits = Punctuated::new();
557    ///         if colon_token.is_some() {
558    ///             loop {
559    ///                 supertraits.push_value(input.parse()?);
560    ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
561    ///                     break;
562    ///                 }
563    ///                 supertraits.push_punct(input.parse()?);
564    ///             }
565    ///         }
566    ///
567    ///         generics.where_clause = input.parse()?;
568    ///         let content;
569    ///         let empty_brace_token = braced!(content in input);
570    ///
571    ///         Ok(MarkerTrait {
572    ///             trait_token,
573    ///             ident,
574    ///             generics,
575    ///             colon_token,
576    ///             supertraits,
577    ///             brace_token: empty_brace_token,
578    ///         })
579    ///     }
580    /// }
581    /// ```
582    pub fn peek<T: Peek>(&self, token: T) -> bool {
583        let _ = token;
584        T::Token::peek(self.cursor())
585    }
586
587    /// Looks at the second-next token in the parse stream.
588    ///
589    /// This is commonly useful as a way to implement contextual keywords.
590    ///
591    /// # Example
592    ///
593    /// This example needs to use `peek2` because the symbol `union` is not a
594    /// keyword in Rust. We can't use just `peek` and decide to parse a union if
595    /// the very next token is `union`, because someone is free to write a `mod
596    /// union` and a macro invocation that looks like `union::some_macro! { ...
597    /// }`. In other words `union` is a contextual keyword.
598    ///
599    /// ```
600    /// use syn::{Ident, ItemUnion, Macro, Result, Token};
601    /// use syn::parse::{Parse, ParseStream};
602    ///
603    /// // Parses either a union or a macro invocation.
604    /// enum UnionOrMacro {
605    ///     // union MaybeUninit<T> { uninit: (), value: T }
606    ///     Union(ItemUnion),
607    ///     // lazy_static! { ... }
608    ///     Macro(Macro),
609    /// }
610    ///
611    /// impl Parse for UnionOrMacro {
612    ///     fn parse(input: ParseStream) -> Result<Self> {
613    ///         if input.peek(Token![union]) && input.peek2(Ident) {
614    ///             input.parse().map(UnionOrMacro::Union)
615    ///         } else {
616    ///             input.parse().map(UnionOrMacro::Macro)
617    ///         }
618    ///     }
619    /// }
620    /// ```
621    pub fn peek2<T: Peek>(&self, token: T) -> bool {
622        fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
623            buffer.cursor().skip().map_or(false, peek)
624        }
625
626        let _ = token;
627        peek2(self, T::Token::peek)
628    }
629
630    /// Looks at the third-next token in the parse stream.
631    pub fn peek3<T: Peek>(&self, token: T) -> bool {
632        fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
633            buffer
634                .cursor()
635                .skip()
636                .and_then(Cursor::skip)
637                .map_or(false, peek)
638        }
639
640        let _ = token;
641        peek3(self, T::Token::peek)
642    }
643
644    /// Parses zero or more occurrences of `T` separated by punctuation of type
645    /// `P`, with optional trailing punctuation.
646    ///
647    /// Parsing continues until the end of this parse stream. The entire content
648    /// of this parse stream must consist of `T` and `P`.
649    ///
650    /// # Example
651    ///
652    /// ```
653    /// # use quote::quote;
654    /// #
655    /// use syn::{parenthesized, token, Ident, Result, Token, Type};
656    /// use syn::parse::{Parse, ParseStream};
657    /// use syn::punctuated::Punctuated;
658    ///
659    /// // Parse a simplified tuple struct syntax like:
660    /// //
661    /// //     struct S(A, B);
662    /// struct TupleStruct {
663    ///     struct_token: Token![struct],
664    ///     ident: Ident,
665    ///     paren_token: token::Paren,
666    ///     fields: Punctuated<Type, Token![,]>,
667    ///     semi_token: Token![;],
668    /// }
669    ///
670    /// impl Parse for TupleStruct {
671    ///     fn parse(input: ParseStream) -> Result<Self> {
672    ///         let content;
673    ///         Ok(TupleStruct {
674    ///             struct_token: input.parse()?,
675    ///             ident: input.parse()?,
676    ///             paren_token: parenthesized!(content in input),
677    ///             fields: content.parse_terminated(Type::parse, Token![,])?,
678    ///             semi_token: input.parse()?,
679    ///         })
680    ///     }
681    /// }
682    /// #
683    /// # let input = quote! {
684    /// #     struct S(A, B);
685    /// # };
686    /// # syn::parse2::<TupleStruct>(input).unwrap();
687    /// ```
688    ///
689    /// # See also
690    ///
691    /// If your separator is anything more complicated than an invocation of the
692    /// `Token!` macro, this method won't be applicable and you can instead
693    /// directly use `Punctuated`'s parser functions: [`parse_terminated`],
694    /// [`parse_separated_nonempty`] etc.
695    ///
696    /// [`parse_terminated`]: Punctuated::parse_terminated
697    /// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
698    ///
699    /// ```
700    /// use syn::{custom_keyword, Expr, Result, Token};
701    /// use syn::parse::{Parse, ParseStream};
702    /// use syn::punctuated::Punctuated;
703    ///
704    /// mod kw {
705    ///     syn::custom_keyword!(fin);
706    /// }
707    ///
708    /// struct Fin(kw::fin, Token![;]);
709    ///
710    /// impl Parse for Fin {
711    ///     fn parse(input: ParseStream) -> Result<Self> {
712    ///         Ok(Self(input.parse()?, input.parse()?))
713    ///     }
714    /// }
715    ///
716    /// struct Thing {
717    ///     steps: Punctuated<Expr, Fin>,
718    /// }
719    ///
720    /// impl Parse for Thing {
721    ///     fn parse(input: ParseStream) -> Result<Self> {
722    /// # if true {
723    ///         Ok(Thing {
724    ///             steps: Punctuated::parse_terminated(input)?,
725    ///         })
726    /// # } else {
727    ///         // or equivalently, this means the same thing:
728    /// #       Ok(Thing {
729    ///             steps: input.call(Punctuated::parse_terminated)?,
730    /// #       })
731    /// # }
732    ///     }
733    /// }
734    /// ```
735    pub fn parse_terminated<T, P>(
736        &'a self,
737        parser: fn(ParseStream<'a>) -> Result<T>,
738        separator: P,
739    ) -> Result<Punctuated<T, P::Token>>
740    where
741        P: Peek,
742        P::Token: Parse,
743    {
744        let _ = separator;
745        Punctuated::parse_terminated_with(self, parser)
746    }
747
748    /// Returns whether there are no more tokens remaining to be parsed from
749    /// this stream.
750    ///
751    /// This method returns true upon reaching the end of the content within a
752    /// set of delimiters, as well as at the end of the tokens provided to the
753    /// outermost parsing entry point.
754    ///
755    /// This is equivalent to
756    /// <code>.<a href="#method.peek">peek</a>(<a href="struct.End.html">syn::parse::End</a>)</code>.
757    /// Use `.peek2(End)` or `.peek3(End)` to look for the end of a parse stream
758    /// further ahead than the current position.
759    ///
760    /// # Example
761    ///
762    /// ```
763    /// use syn::{braced, token, Ident, Item, Result, Token};
764    /// use syn::parse::{Parse, ParseStream};
765    ///
766    /// // Parses a Rust `mod m { ... }` containing zero or more items.
767    /// struct Mod {
768    ///     mod_token: Token![mod],
769    ///     name: Ident,
770    ///     brace_token: token::Brace,
771    ///     items: Vec<Item>,
772    /// }
773    ///
774    /// impl Parse for Mod {
775    ///     fn parse(input: ParseStream) -> Result<Self> {
776    ///         let content;
777    ///         Ok(Mod {
778    ///             mod_token: input.parse()?,
779    ///             name: input.parse()?,
780    ///             brace_token: braced!(content in input),
781    ///             items: {
782    ///                 let mut items = Vec::new();
783    ///                 while !content.is_empty() {
784    ///                     items.push(content.parse()?);
785    ///                 }
786    ///                 items
787    ///             },
788    ///         })
789    ///     }
790    /// }
791    /// ```
792    pub fn is_empty(&self) -> bool {
793        self.cursor().eof()
794    }
795
796    /// Constructs a helper for peeking at the next token in this stream and
797    /// building an error message if it is not one of a set of expected tokens.
798    ///
799    /// # Example
800    ///
801    /// ```
802    /// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
803    /// use syn::parse::{Parse, ParseStream};
804    ///
805    /// // A generic parameter, a single one of the comma-separated elements inside
806    /// // angle brackets in:
807    /// //
808    /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
809    /// //
810    /// // On invalid input, lookahead gives us a reasonable error message.
811    /// //
812    /// //     error: expected one of: identifier, lifetime, `const`
813    /// //       |
814    /// //     5 |     fn f<!Sized>() {}
815    /// //       |          ^
816    /// enum GenericParam {
817    ///     Type(TypeParam),
818    ///     Lifetime(LifetimeParam),
819    ///     Const(ConstParam),
820    /// }
821    ///
822    /// impl Parse for GenericParam {
823    ///     fn parse(input: ParseStream) -> Result<Self> {
824    ///         let lookahead = input.lookahead1();
825    ///         if lookahead.peek(Ident) {
826    ///             input.parse().map(GenericParam::Type)
827    ///         } else if lookahead.peek(Lifetime) {
828    ///             input.parse().map(GenericParam::Lifetime)
829    ///         } else if lookahead.peek(Token![const]) {
830    ///             input.parse().map(GenericParam::Const)
831    ///         } else {
832    ///             Err(lookahead.error())
833    ///         }
834    ///     }
835    /// }
836    /// ```
837    pub fn lookahead1(&self) -> Lookahead1<'a> {
838        lookahead::new(self.scope, self.cursor())
839    }
840
841    /// Forks a parse stream so that parsing tokens out of either the original
842    /// or the fork does not advance the position of the other.
843    ///
844    /// # Performance
845    ///
846    /// Forking a parse stream is a cheap fixed amount of work and does not
847    /// involve copying token buffers. Where you might hit performance problems
848    /// is if your macro ends up parsing a large amount of content more than
849    /// once.
850    ///
851    /// ```
852    /// # use syn::{Expr, Result};
853    /// # use syn::parse::ParseStream;
854    /// #
855    /// # fn bad(input: ParseStream) -> Result<Expr> {
856    /// // Do not do this.
857    /// if input.fork().parse::<Expr>().is_ok() {
858    ///     return input.parse::<Expr>();
859    /// }
860    /// # unimplemented!()
861    /// # }
862    /// ```
863    ///
864    /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
865    /// parse stream. Only use a fork when the amount of work performed against
866    /// the fork is small and bounded.
867    ///
868    /// When complex speculative parsing against the forked stream is
869    /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
870    /// original stream once the fork's parse is determined to have been
871    /// successful.
872    ///
873    /// For a lower level way to perform speculative parsing at the token level,
874    /// consider using [`ParseStream::step`] instead.
875    ///
876    /// [`parse::discouraged::Speculative`]: discouraged::Speculative
877    /// [`ParseStream::step`]: ParseBuffer::step
878    ///
879    /// # Example
880    ///
881    /// The parse implementation shown here parses possibly restricted `pub`
882    /// visibilities.
883    ///
884    /// - `pub`
885    /// - `pub(crate)`
886    /// - `pub(self)`
887    /// - `pub(super)`
888    /// - `pub(in some::path)`
889    ///
890    /// To handle the case of visibilities inside of tuple structs, the parser
891    /// needs to distinguish parentheses that specify visibility restrictions
892    /// from parentheses that form part of a tuple type.
893    ///
894    /// ```
895    /// # struct A;
896    /// # struct B;
897    /// # struct C;
898    /// #
899    /// struct S(pub(crate) A, pub (B, C));
900    /// ```
901    ///
902    /// In this example input the first tuple struct element of `S` has
903    /// `pub(crate)` visibility while the second tuple struct element has `pub`
904    /// visibility; the parentheses around `(B, C)` are part of the type rather
905    /// than part of a visibility restriction.
906    ///
907    /// The parser uses a forked parse stream to check the first token inside of
908    /// parentheses after the `pub` keyword. This is a small bounded amount of
909    /// work performed against the forked parse stream.
910    ///
911    /// ```
912    /// use syn::{parenthesized, token, Ident, Path, Result, Token};
913    /// use syn::ext::IdentExt;
914    /// use syn::parse::{Parse, ParseStream};
915    ///
916    /// struct PubVisibility {
917    ///     pub_token: Token![pub],
918    ///     restricted: Option<Restricted>,
919    /// }
920    ///
921    /// struct Restricted {
922    ///     paren_token: token::Paren,
923    ///     in_token: Option<Token![in]>,
924    ///     path: Path,
925    /// }
926    ///
927    /// impl Parse for PubVisibility {
928    ///     fn parse(input: ParseStream) -> Result<Self> {
929    ///         let pub_token: Token![pub] = input.parse()?;
930    ///
931    ///         if input.peek(token::Paren) {
932    ///             let ahead = input.fork();
933    ///             let mut content;
934    ///             parenthesized!(content in ahead);
935    ///
936    ///             if content.peek(Token![crate])
937    ///                 || content.peek(Token![self])
938    ///                 || content.peek(Token![super])
939    ///             {
940    ///                 return Ok(PubVisibility {
941    ///                     pub_token,
942    ///                     restricted: Some(Restricted {
943    ///                         paren_token: parenthesized!(content in input),
944    ///                         in_token: None,
945    ///                         path: Path::from(content.call(Ident::parse_any)?),
946    ///                     }),
947    ///                 });
948    ///             } else if content.peek(Token![in]) {
949    ///                 return Ok(PubVisibility {
950    ///                     pub_token,
951    ///                     restricted: Some(Restricted {
952    ///                         paren_token: parenthesized!(content in input),
953    ///                         in_token: Some(content.parse()?),
954    ///                         path: content.call(Path::parse_mod_style)?,
955    ///                     }),
956    ///                 });
957    ///             }
958    ///         }
959    ///
960    ///         Ok(PubVisibility {
961    ///             pub_token,
962    ///             restricted: None,
963    ///         })
964    ///     }
965    /// }
966    /// ```
967    pub fn fork(&self) -> Self {
968        ParseBuffer {
969            scope: self.scope,
970            cell: self.cell.clone(),
971            marker: PhantomData,
972            // Not the parent's unexpected. Nothing cares whether the clone
973            // parses all the way unless we `advance_to`.
974            unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
975        }
976    }
977
978    /// Triggers an error at the current position of the parse stream.
979    ///
980    /// # Example
981    ///
982    /// ```
983    /// use syn::{Expr, Result, Token};
984    /// use syn::parse::{Parse, ParseStream};
985    ///
986    /// // Some kind of loop: `while` or `for` or `loop`.
987    /// struct Loop {
988    ///     expr: Expr,
989    /// }
990    ///
991    /// impl Parse for Loop {
992    ///     fn parse(input: ParseStream) -> Result<Self> {
993    ///         if input.peek(Token![while])
994    ///             || input.peek(Token![for])
995    ///             || input.peek(Token![loop])
996    ///         {
997    ///             Ok(Loop {
998    ///                 expr: input.parse()?,
999    ///             })
1000    ///         } else {
1001    ///             Err(input.error("expected some kind of loop"))
1002    ///         }
1003    ///     }
1004    /// }
1005    /// ```
1006    pub fn error<T: Display>(&self, message: T) -> Error {
1007        error::new_at(self.scope, self.cursor(), message)
1008    }
1009
1010    /// Speculatively parses tokens from this parse stream, advancing the
1011    /// position of this stream only if parsing succeeds.
1012    ///
1013    /// This is a powerful low-level API used for defining the `Parse` impls of
1014    /// the basic built-in token types. It is not something that will be used
1015    /// widely outside of the Syn codebase.
1016    ///
1017    /// # Example
1018    ///
1019    /// ```
1020    /// use proc_macro2::TokenTree;
1021    /// use syn::Result;
1022    /// use syn::parse::ParseStream;
1023    ///
1024    /// // This function advances the stream past the next occurrence of `@`. If
1025    /// // no `@` is present in the stream, the stream position is unchanged and
1026    /// // an error is returned.
1027    /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
1028    ///     input.step(|cursor| {
1029    ///         let mut rest = *cursor;
1030    ///         while let Some((tt, next)) = rest.token_tree() {
1031    ///             match &tt {
1032    ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
1033    ///                     return Ok(((), next));
1034    ///                 }
1035    ///                 _ => rest = next,
1036    ///             }
1037    ///         }
1038    ///         Err(cursor.error("no `@` was found after this point"))
1039    ///     })
1040    /// }
1041    /// #
1042    /// # fn remainder_after_skipping_past_next_at(
1043    /// #     input: ParseStream,
1044    /// # ) -> Result<proc_macro2::TokenStream> {
1045    /// #     skip_past_next_at(input)?;
1046    /// #     input.parse()
1047    /// # }
1048    /// #
1049    /// # use syn::parse::Parser;
1050    /// # let remainder = remainder_after_skipping_past_next_at
1051    /// #     .parse_str("a @ b c")
1052    /// #     .unwrap();
1053    /// # assert_eq!(remainder.to_string(), "b c");
1054    /// ```
1055    pub fn step<F, R>(&self, function: F) -> Result<R>
1056    where
1057        F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1058    {
1059        // Since the user's function is required to work for any 'c, we know
1060        // that the Cursor<'c> they return is either derived from the input
1061        // StepCursor<'c, 'a> or from a Cursor<'static>.
1062        //
1063        // It would not be legal to write this function without the invariant
1064        // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1065        // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1066        // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1067        // `step` on their ParseBuffer<'short> with a closure that returns
1068        // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1069        // the Cell intended to hold Cursor<'a>.
1070        //
1071        // In some cases it may be necessary for R to contain a Cursor<'a>.
1072        // Within Syn we solve this using `advance_step_cursor` which uses the
1073        // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1074        // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1075        // safe to expose that API as a method on StepCursor.
1076        let (node, rest) = function(StepCursor {
1077            scope: self.scope,
1078            cursor: self.cell.get(),
1079            marker: PhantomData,
1080        })?;
1081        self.cell.set(rest);
1082        Ok(node)
1083    }
1084
1085    /// Returns the `Span` of the next token in the parse stream, or
1086    /// `Span::call_site()` if this parse stream has completely exhausted its
1087    /// input `TokenStream`.
1088    pub fn span(&self) -> Span {
1089        let cursor = self.cursor();
1090        if cursor.eof() {
1091            self.scope
1092        } else {
1093            crate::buffer::open_span_of_group(cursor)
1094        }
1095    }
1096
1097    /// Provides low-level access to the token representation underlying this
1098    /// parse stream.
1099    ///
1100    /// Cursors are immutable so no operations you perform against the cursor
1101    /// will affect the state of this parse stream.
1102    ///
1103    /// # Example
1104    ///
1105    /// ```
1106    /// use proc_macro2::TokenStream;
1107    /// use syn::buffer::Cursor;
1108    /// use syn::parse::{ParseStream, Result};
1109    ///
1110    /// // Run a parser that returns T, but get its output as TokenStream instead of T.
1111    /// // This works without T needing to implement ToTokens.
1112    /// fn recognize_token_stream<T>(
1113    ///     recognizer: fn(ParseStream) -> Result<T>,
1114    /// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
1115    ///     move |input| {
1116    ///         let begin = input.cursor();
1117    ///         recognizer(input)?;
1118    ///         let end = input.cursor();
1119    ///         Ok(tokens_between(begin, end))
1120    ///     }
1121    /// }
1122    ///
1123    /// // Collect tokens between two cursors as a TokenStream.
1124    /// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
1125    ///     assert!(begin <= end);
1126    ///
1127    ///     let mut cursor = begin;
1128    ///     let mut tokens = TokenStream::new();
1129    ///     while cursor < end {
1130    ///         let (token, next) = cursor.token_tree().unwrap();
1131    ///         tokens.extend(core::iter::once(token));
1132    ///         cursor = next;
1133    ///     }
1134    ///     tokens
1135    /// }
1136    ///
1137    /// fn main() {
1138    ///     use quote::quote;
1139    ///     use syn::parse::{Parse, Parser};
1140    ///     use syn::Token;
1141    ///
1142    ///     // Parse syn::Type as a TokenStream, surrounded by angle brackets.
1143    ///     fn example(input: ParseStream) -> Result<TokenStream> {
1144    ///         let _langle: Token![<] = input.parse()?;
1145    ///         let ty = recognize_token_stream(syn::Type::parse)(input)?;
1146    ///         let _rangle: Token![>] = input.parse()?;
1147    ///         Ok(ty)
1148    ///     }
1149    ///
1150    ///     let tokens = quote! { <fn() -> u8> };
1151    ///     println!("{}", example.parse2(tokens).unwrap());
1152    /// }
1153    /// ```
1154    pub fn cursor(&self) -> Cursor<'a> {
1155        self.cell.get()
1156    }
1157
1158    fn check_unexpected(&self) -> Result<()> {
1159        match inner_unexpected(self).1 {
1160            Some((span, delimiter)) => Err(err_unexpected_token(span, delimiter)),
1161            None => Ok(()),
1162        }
1163    }
1164}
1165
1166#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1167impl<T: Parse> Parse for Box<T> {
1168    fn parse(input: ParseStream) -> Result<Self> {
1169        input.parse().map(Box::new)
1170    }
1171}
1172
1173#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1174impl<T: Parse + Token> Parse for Option<T> {
1175    fn parse(input: ParseStream) -> Result<Self> {
1176        if T::peek(input.cursor()) {
1177            Ok(Some(input.parse()?))
1178        } else {
1179            Ok(None)
1180        }
1181    }
1182}
1183
1184#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1185impl Parse for TokenStream {
1186    fn parse(input: ParseStream) -> Result<Self> {
1187        input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1188    }
1189}
1190
1191#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1192impl Parse for TokenTree {
1193    fn parse(input: ParseStream) -> Result<Self> {
1194        input.step(|cursor| match cursor.token_tree() {
1195            Some((tt, rest)) => Ok((tt, rest)),
1196            None => Err(cursor.error("expected token tree")),
1197        })
1198    }
1199}
1200
1201#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1202impl Parse for Group {
1203    fn parse(input: ParseStream) -> Result<Self> {
1204        input.step(|cursor| {
1205            if let Some((group, rest)) = cursor.any_group_token() {
1206                if group.delimiter() != Delimiter::None {
1207                    return Ok((group, rest));
1208                }
1209            }
1210            Err(cursor.error("expected group token"))
1211        })
1212    }
1213}
1214
1215#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1216impl Parse for Punct {
1217    fn parse(input: ParseStream) -> Result<Self> {
1218        input.step(|cursor| match cursor.punct() {
1219            Some((punct, rest)) => Ok((punct, rest)),
1220            None => Err(cursor.error("expected punctuation token")),
1221        })
1222    }
1223}
1224
1225#[cfg_attr(docsrs, doc(cfg(feature = "parsing")))]
1226impl Parse for Literal {
1227    fn parse(input: ParseStream) -> Result<Self> {
1228        input.step(|cursor| match cursor.literal() {
1229            Some((literal, rest)) => Ok((literal, rest)),
1230            None => Err(cursor.error("expected literal token")),
1231        })
1232    }
1233}
1234
1235/// Parser that can parse Rust tokens into a particular syntax tree node.
1236///
1237/// Refer to the [module documentation] for details about parsing in Syn.
1238///
1239/// [module documentation]: self
1240pub trait Parser: Sized {
1241    type Output;
1242
1243    /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1244    ///
1245    /// This function enforces that the input is fully parsed. If there are any
1246    /// unparsed tokens at the end of the stream, an error is returned.
1247    fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1248
1249    /// Parse tokens of source code into the chosen syntax tree node.
1250    ///
1251    /// This function enforces that the input is fully parsed. If there are any
1252    /// unparsed tokens at the end of the stream, an error is returned.
1253    #[cfg(feature = "proc-macro")]
1254    #[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
1255    fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1256        self.parse2(proc_macro2::TokenStream::from(tokens))
1257    }
1258
1259    /// Parse a string of Rust code into the chosen syntax tree node.
1260    ///
1261    /// This function enforces that the input is fully parsed. If there are any
1262    /// unparsed tokens at the end of the string, an error is returned.
1263    ///
1264    /// # Hygiene
1265    ///
1266    /// Every span in the resulting syntax tree will be set to resolve at the
1267    /// macro call site.
1268    fn parse_str(self, s: &str) -> Result<Self::Output> {
1269        self.parse2(proc_macro2::TokenStream::from_str(s)?)
1270    }
1271
1272    // Not public API.
1273    #[doc(hidden)]
1274    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1275        let _ = scope;
1276        self.parse2(tokens)
1277    }
1278}
1279
1280fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1281    let scope = Span::call_site();
1282    let cursor = tokens.begin();
1283    let unexpected = Rc::new(Cell::new(Unexpected::None));
1284    new_parse_buffer(scope, cursor, unexpected)
1285}
1286
1287impl<F, T> Parser for F
1288where
1289    F: FnOnce(ParseStream) -> Result<T>,
1290{
1291    type Output = T;
1292
1293    fn parse2(self, tokens: TokenStream) -> Result<T> {
1294        let buf = TokenBuffer::new2(tokens);
1295        let state = tokens_to_parse_buffer(&buf);
1296        let node = self(&state)?;
1297        state.check_unexpected()?;
1298        if let Some((unexpected_span, delimiter)) =
1299            span_of_unexpected_ignoring_nones(state.cursor())
1300        {
1301            Err(err_unexpected_token(unexpected_span, delimiter))
1302        } else {
1303            Ok(node)
1304        }
1305    }
1306
1307    fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1308        let buf = TokenBuffer::new2(tokens);
1309        let cursor = buf.begin();
1310        let unexpected = Rc::new(Cell::new(Unexpected::None));
1311        let state = new_parse_buffer(scope, cursor, unexpected);
1312        let node = self(&state)?;
1313        state.check_unexpected()?;
1314        if let Some((unexpected_span, delimiter)) =
1315            span_of_unexpected_ignoring_nones(state.cursor())
1316        {
1317            Err(err_unexpected_token(unexpected_span, delimiter))
1318        } else {
1319            Ok(node)
1320        }
1321    }
1322}
1323
1324pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1325    f.__parse_scoped(scope, tokens)
1326}
1327
1328fn err_unexpected_token(span: Span, delimiter: Delimiter) -> Error {
1329    let msg = match delimiter {
1330        Delimiter::Parenthesis => "unexpected token, expected `)`",
1331        Delimiter::Brace => "unexpected token, expected `}`",
1332        Delimiter::Bracket => "unexpected token, expected `]`",
1333        Delimiter::None => "unexpected token",
1334    };
1335    Error::new(span, msg)
1336}
1337
1338/// An empty syntax tree node that consumes no tokens when parsed.
1339///
1340/// This is useful for attribute macros that want to ensure they are not
1341/// provided any attribute args.
1342///
1343/// ```
1344/// # extern crate proc_macro;
1345/// #
1346/// use proc_macro::TokenStream;
1347/// use syn::parse_macro_input;
1348/// use syn::parse::Nothing;
1349///
1350/// # const IGNORE: &str = stringify! {
1351/// #[proc_macro_attribute]
1352/// # };
1353/// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1354///     parse_macro_input!(args as Nothing);
1355///
1356///     /* ... */
1357/// #   TokenStream::new()
1358/// }
1359/// ```
1360///
1361/// ```text
1362/// error: unexpected token
1363///  --> src/main.rs:3:19
1364///   |
1365/// 3 | #[my_attr(asdf)]
1366///   |           ^^^^
1367/// ```
1368pub struct Nothing;
1369
1370impl Parse for Nothing {
1371    fn parse(_input: ParseStream) -> Result<Self> {
1372        Ok(Nothing)
1373    }
1374}
1375
1376#[cfg(feature = "printing")]
1377#[cfg_attr(docsrs, doc(cfg(feature = "printing")))]
1378impl ToTokens for Nothing {
1379    fn to_tokens(&self, tokens: &mut TokenStream) {
1380        let _ = tokens;
1381    }
1382}
1383
1384#[cfg(feature = "clone-impls")]
1385#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1386impl Clone for Nothing {
1387    fn clone(&self) -> Self {
1388        *self
1389    }
1390}
1391
1392#[cfg(feature = "clone-impls")]
1393#[cfg_attr(docsrs, doc(cfg(feature = "clone-impls")))]
1394impl Copy for Nothing {}
1395
1396#[cfg(feature = "extra-traits")]
1397#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1398impl Debug for Nothing {
1399    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1400        f.write_str("Nothing")
1401    }
1402}
1403
1404#[cfg(feature = "extra-traits")]
1405#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1406impl Eq for Nothing {}
1407
1408#[cfg(feature = "extra-traits")]
1409#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1410impl PartialEq for Nothing {
1411    fn eq(&self, _other: &Self) -> bool {
1412        true
1413    }
1414}
1415
1416#[cfg(feature = "extra-traits")]
1417#[cfg_attr(docsrs, doc(cfg(feature = "extra-traits")))]
1418impl Hash for Nothing {
1419    fn hash<H: Hasher>(&self, _state: &mut H) {}
1420}